
CS103 Handout 25
Spring 2017 May 5, 2017

Problem Set 5

This problem set – the last one purely on discrete mathematics – is designed as a cumulative review
of the topics we’ve covered so far and a proving ground to try out your newfound skills with mathe-
matical induction. The problems here span all sorts of topics – parallel processing, the nature of in-
finity, tiling problems, and tournament structures – and we hope that it serves as a fitting coda to our
whirlwind tour of discrete math!

We recommend that you read the Handout #24, “Guide to Induction,” before starting this problem set.
It contains a lot of useful advice about how to approach problems inductively, how to structure in-
ductive proofs, and how to not fall into common inductive traps.

As a note on this problem set – normally, you're welcome to use any proof technique you'd like to
prove results in this course. On this problem set, we've specifically requested on some problems that
you prove a result inductively. For those problems, you should prove those results using induction or
complete induction, even if there is another way to prove the result. (If you'd like to use induction in
conjunction with other techniques like proof by contradiction or proof by contrapositive, that's per-
fectly fine.)

As always, please feel free to drop by office hours, visit Piazza, or send us emails if you have any
questions. We'd be happy to help out.

Good luck, and have fun!

Due Friday, May 12 at the start of class.
There is no checkpoint problem.

2 / 7

Problem One: Chains and Antichains
Let A be an arbitrary set and <A be some strict order over A. A chain in <A is a series x₁, …, x ₖ of ele-
ments drawn from A such that

x₁ <A x₂ <A … <A xₖ.

Intuitively, a chain is a series of values in ascending order according to the strict order <A. The length of a
chain is the number of elements in that chain.

i. Consider the ⊊ relation over the set ℘({a, b, c}), where A ⊊ B means that A ⊆ B but A ≠ B. What
is the length of the longest chain in this strict order? Give an example of a chain with that length.
No justification is necessary. (Hint: Draw the Hasse diagram and see if you can find a visual intu-
ition for the definition of a chain.)

Now, let's cover a new definition. An antichain is a set X ⊆ A such that no two elements in X can be com-
pared by the <A relation. In other words, a set X ⊆ A is an antichain if

∀a ∈ X. ∀b ∈ X. (a ≮A b ∧ b ≮A a)

The size of an antichain X is the number of elements in X.

ii. Consider the ⊊ relation over the set ℘({a, b, c}). What is the size of the largest antichain in this
strict order? Give an example of an antichain with that size. No justification is necessary. (Hint:
Draw the Hasse diagram and see if you can find a visual intuition for the definition of an an-
tichain.)

Given an arbitrary strictly ordered set, you can't say anything a priori about the size of the largest chain or
antichain in that strict order. However, you can say that at least one of them must be relatively large rela-
tive to the strictly ordered set.

Let <A be an arbitrary strict order over an arbitrary set A containing exactly n2+1 elements for some natu-
ral number n ≥ 1. We're going to ask you to prove the following result: either A contains a chain of length
n+1 or an antichain of size n+1 (or both). Following the advice from Handout 14, we’ll prove this by in-
stead proving that if A does not contain a chain of length n+1 or greater, then A must contain an antichain
of size n+1 or greater.

iii. For each element a ∈ A, we'll say that the height of a is the length of the longest chain whose final
element is a. Prove that if A does not contain a chain of length n+1 or greater, then there must be
at least n+1 elements of A at the same height. (Something to think about: what’s the smallest possi-
ble height of an element of A?)

iv. Your result from part (iii) establishes that if A does not contain a chain of length n+1 or greater,
there must be a collection of n+1 elements of A at the same height as one another. Prove that if A
does not contain a chain of length n+1 or greater, then it contains an antichain of size n+1 or
greater.

Intuitively speaking, if <A is a strict order over A that represents some prerequisite structure on a group of
tasks, a chain represents a series of tasks that have to be performed one after the other, and an antichain
represents a group of tasks that can all be performed in parallel (do you see why?) In the context of paral -
lel computing, the result you've proved states that if a group of tasks doesn't contain long dependency
chains, that group must have a good degree of parallelism.

3 / 7

Problem Two: Recurrence Relations
A recurrence relation is a recursive definition of the terms in a sequence. Typically, a recurrence relation
specifies the value of the first few terms in a sequence, then defines the remaining terms from the previous
terms. For example, the Fibonacci sequence can be defined by the following recurrence relation:

F0 = 0
F1 = 1

Fn+2 = Fn + Fn+1

The first terms of this sequence are F0 = 0, F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, etc.

Some recurrence relations define well-known sequences. For example, consider the following recurrence
relation:

a0 = 1
an+1 = 2an

The first few terms of this sequence are 1, 2, 4, 8, 16, 32, …, which happen to be powers of two. It turns
out that this isn't a coincidence – this recurrence relation perfectly describes the powers of two.

i. Prove by induction that for any n ∈ ℕ, we have an = 2n.

Minor changes to the recursive step in a recurrence relation can lead to enormous changes in what num-
bers are generated. Consider the following two recurrence relations, which are similar to the an sequence
defined above but with slight changes to the recursive step:

b0 = 1
bn+1 = 2bn – 1

c0 = 1
cn+1 = 2cn + 1

ii. Find non-recursive definitions for bn and cn, then prove by induction that your definitions are cor-
rect.

Finding non-recursive definitions for recurrences (often called “solving” the recurrence) is useful in the
design and analysis of algorithms. Commonly, when trying to analyze the runtime of an algorithm, you
will arrive at a recurrence relation describing the runtime on an input of size n in terms of the runtime on
inputs of smaller sizes. Solving the recurrence then lets you precisely determine the runtime. To learn
more, take CS161, Math 108, or consider reading through Concrete Mathematics by Graham, Knuth, and
Patashnik.

4 / 7

Problem Three: Cartesian Products and Cardinalities
The cardinality of the Cartesian product of two sets depends purely on the cardinalities of those sets, not
on what the elements of those sets actually are. This question will ask you to prove this.

Let A, B, C, and D be sets where |A| = |C| and |B| = |D|. Our goal is to prove |A × B| = |C × D|. Since we
know |A| = |C|, there has to be some bijection g : A → C. Since we know |B| = |D|, there has to be some bi-
jection h : B → D. Now, consider the function f : A × B → C × D defined as follows:

f(a, b) = (g(a), h(b))

That is, the output of f when applied to the pair (a, b) is an ordered pair whose first element is g(a) and
whose second element is h(b).

i. Using the function f defined above, prove that if A, B, C, and D are sets where |A| = |C| and
|B| = |D|, then we have |A × B| = |C × D|. Specifically, prove that f is a bijection between A × B
and C × D.

We can define the “Cartesian power” of a set as follows. For any set A and any positive natural number n,
we define An inductively:

A1 = A

An+1 = A × An (for n ≥ 1)

ii. Using your result from (i) and the above definition, prove by induction that |ℕk| = |ℕ| for all
nonzero k ∈ ℕ. This result means that for any nonzero finite k, there are the same number of k-tu-
ples of natural numbers as natural numbers. (Hint: You might want to use a result from lecture.)

(Here's some justification for the problem you just did. You don't need to read this if you don't want to, but
we think you might find it interesting. ☺)

We've defined cardinality on a relative basis, defining |A| = |B|, |A| ≠ |B|, |A| ≤ |B|, and |A| < |B| in terms of
functions between those sets. We specifically didn't talk about cardinalities as actual quantities, since it's
tricky to do so. That said, it is possible to treat set cardinalities as actual objects. Intuitively speaking, the
cardinality of a set is a measure of how large that set is. For finite sets, the cardinality of that set will be a
natural number, and for infinite sets the cardinality of that set will be an infinite cardinality, a generaliza-
tion of the natural numbers that measure the sizes of infinite sets. For example, ℵ₀, which we introduced
in our first lecture as the cardinality of ℕ, is an infinite cardinality.

Given cardinalities κ₁ and κ₂, we define the product of those two cardinalities, κ₁ · κ₂, to be |A × B|, where
A and B are any sets where |A| = κ₁ and |B| = κ₂. For example, 4 · 3 is by definition the cardinality |A × B|
for any set A of cardinality 4 and any set B of cardinality 3. Similarly, by definition the value of ℵ₀ · ℵ₀ is
the cardinality |A × B| for any sets A and B of cardinality ℵ₀.

To make sure that this definition is legal, we have to make sure that the cardinality of the Cartesian prod-
uct depends purely on the cardinalities of the two sets, not their contents. For example, this definition
wouldn't give us a way to compute 4 · 3 if the cardinality of the Cartesian product of a set of four apples
and three oranges was different than the cardinality of the Cartesian product of a set of four unicorns and
three ponies. We need to show that for any sets A, B, C, and D, that if |A| = |C| and |B| = |D|, then
|A × B| = |C × D|. That way, when determining the value of κ₁ · κ₂, it doesn't matter which sets of cardi-
nality κ₁ and κ₂ we pick; any choice works. Your proof from (i) filled in this step.

Your result from part (ii) shows that ℵ₀n = ℵ₀ for any positive natural number n. Isn't infinity weird?

5 / 7

Problem Four: Tiling with Triominoes
Recall from Problem Set One that a right triomino is an L-shaped tile that looks like this:

Suppose that you are also given a square grid of size 2n × 2n and want to tile it with right triominoes by
covering the grid with triominoes such that all triominoes are completely on the grid and no triominoes
overlap. Here's an attempt to cover an 8 × 8 grid with triominoes, which fails because not all squares in
the grid are covered:

Amazingly, it turns out that it is always possible to tile any 2n × 2n grid that's missing exactly one square
with right triominoes. It doesn't matter what n is or which square is removed; there is always a solution to
the problem. For example, here are all the ways to tile a 4 × 4 grid that has a square missing:

Prove by induction that any 2n × 2n grid with any one square removed can be tiled by right triominoes.

6 / 7

Problem Five: The Circle Game
Here's a game you can play. Suppose that you have a circle
with 2n arbitrarily-chosen points on its circumference. n of
these points are labeled +1, and the remaining n are labeled
-1. One sample circle with eight points, of which four are la-
beled +1 and four are labeled -1, is shown to the right.

Here's the rules of the game. First, choose one of the 2n
points as your starting point. Then, start moving clockwise
around the circle. As you go, you'll pass through some num-
ber of +1 points and some number of -1 points. You lose the
game if at any point on your journey you pass through more
-1 points than +1 points. You win the game if you get all the
way back around to your starting point without losing.

For example, if you started at point A, the game would go like this:

Start at A: +1.
Pass through B: +2.
Pass through C: +1.
Pass through D: 0.
Pass through E: -1. (You lose.)

If you started at point G, the game would go like this:

Start at G: -1 (You lose.)

However, if you started at point F, the game would go like this:

Start at F: +1.
Pass through G: 0.
Pass through H: +1.
Pass through A: +2.
Pass through B: +3.
Pass through C: +2.
Pass through D: +1.
Pass through E: +0.
Return to F. (You win!)

Interestingly, it turns out that no matter which n points are labeled +1 and which n points are labeled -1,
there is always at least one point you can start at to win the game.

Prove, by induction, that the above fact is true for any n ≥ 1.

A

G C

E

D

BH

F

+1

+1

+1

+1

-1

-1

-1

-1

7 / 7

Problem Six: Nim
Nim is a family of games played by two players. The game begins with several piles of stones, each of
which has zero or more stones in it, that are shared between the two players. Players alternate taking turns
removing any nonzero number of stones from any single pile of their choice. If at the start of a player's
turn all the piles are empty, then that player loses the game.

Prove, by induction, that if the game is played with just two piles of stones, each of which begins with ex-
actly the same number of stones, then the second player can always win the game if she plays correctly.

Before trying to write up your answer to this question, we recommend playing this game with a partner
until you can find a winning strategy.

Problem Seven: Tournament Graphs
In Problem Set Two, you explored tournaments, contests among n ≥ 0 players
where each player plays exactly one game against each other player and no
game ends in a tie.

From a graph-theoretic perspective, we can treat tournaments as graphs. Each
player is a node, and there's exactly one edge between each pair of nodes. The
edge is directed such that the edge goes from the winner of the game to the
loser of the game. For example, in the graph to the left, player D beat players
A and E, but lost to players B and C. These sorts of graphs are called tourna-
ment graphs.

Let's introduce a new definition. If T is a tournament graph, a subtournament of T is a tournament graph
T' formed by picking a subset of the players in T and considering just the games those players played
against each other. (Note that, just like any set is a subset of itself, any tournament is a subtournament of
itself).

Now, let's introduce one final definition. A tournament graph T is called transitive if it contains no cycles.
Prove by induction that for any natural number n, if T is a tournament graph with exactly 2n nodes, then T
contains a transitive subtournament T* with at least n + 1 nodes.

As a hint, you might want to use the bowtie decomposition. Given any nonempty tournament T, if you
choose a player p from T, you can split the remaining players in T into two subtournaments T₀ and T₁ con-
sisting of just the players who beat p and just the players who lost to p, respectively.

Extra Credit Problem: My Old CS103 Midterm (1 Point Extra Credit)
I learned proofwriting and discrete math when I took CS103 here way back in Winter 2007. I still re-
member the midterm exam for that class – it probably the single hardest exam I've ever taken. Here's a
question that was actually asked on the midterm that quarter. And don't worry... I would never ask some-
thing like this on a CS103 midterm!

Imagine you have a collection of n planes in three-dimensional space. The planes are chosen so that any
two planes will intersect each other at a line, any three planes will intersect at a single point, but no com-
bination of four planes will intersect at the same point. These planes will split three-dimensional space
into a collection of different regions.

How many of those regions will there be, as a function of n? Prove it by induction.

A

B

C

D

E

